Introduction
We want to show the evolution of the coronavirus cases using R creating static and interactive plots.
Plots
Solution
We use the data repository created by Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). There are three time-series: confirmed, deaths and recovered cases. First we will prepare the data and then plot the time-series using ggplot2 for the static version and plotly to add interactivity. The data source includes cases across the world, but in our example we will subset the time-series for Germany, France, Italy, Spain, and the United Kingdom.
# Libraries
library(magrittr)
library(lubridate)
library(tidyverse)
library(plotly)
library(scales)
# Importing data
confirmed <- read_csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Confirmed.csv")
deaths <- read_csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Deaths.csv")
recovered <- read_csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Recovered.csv")
# Data preparation
AppendMe <- function(dfNames) {
do.call(rbind, lapply(dfNames, function(x) {
cbind(get(x), source = x)
}))
}
df <- AppendMe(c("confirmed", "deaths", "recovered"))
data <- df %>%
rename(province = `Province/State`, country = `Country/Region`) %>%
pivot_longer(
-c(province, country, Lat, Long, source),
names_to = "date",
values_to = "count"
) %>%
mutate(date = mdy(date))
# Plot linear scale
p <- data %>%
filter(country %in% c("Germany", "France", "Italy", "Spain", "United Kingdom")) %>%
group_by(country, date, source) %>%
summarise(n = sum(count)) %>%
ggplot(aes(date, n, colour = country)) +
geom_line(linetype = 2) +
geom_point(size = 1) +
facet_wrap( ~ source , scales = "free", nrow = 3) +
theme_bw()+
labs(title = "Cumulative Covid-19 cases (linear scale)")+
ylab("")+
scale_x_date(date_labels = "%b %d")+
scale_y_continuous(labels = comma)
p # Static
ggplotly(p) # Interactive
# Plot log scale
p <- data %>%
filter(country %in% c("Germany", "France", "Italy", "Spain", "United Kingdom")) %>%
group_by(country, date, source) %>%
summarise(n = sum(count)) %>%
ggplot(aes(date, n, colour = country)) +
geom_line(linetype = 2) +
geom_point(size = 1) +
facet_wrap( ~ source, scales = "free", nrow = 3) +
theme_bw()+
labs(title = "Cumulative Covid-19 cases (log scale)")+
ylab("")+
scale_x_date(date_labels = "%b %d")+
scale_y_log10(breaks = c(1, 10, 100, 10000))
p
ggplotly(p)
To highlight a series while hovering over it, we use the function highlightfrom the plotly package.
p <- data %>%
filter(country %in% c("Germany", "France", "Italy", "Spain", "United Kingdom")) %>%
group_by(country, date, source) %>%
summarise(cases = sum(count)) %>%
highlight_key(~ country ) %>%
ggplot(aes(date, cases, colour = country)) +
geom_line(linetype = 2)+
geom_point(size = 1) +
facet_wrap(~ source , scales = "free", nrow = 3)+
theme_bw()+
labs(title = "Cumulative Covid-19 cases (linear scale)")+
ylab("")+
scale_x_date(date_labels = "%b %d")+
scale_y_continuous(labels = comma)
ggplotly(p, tooltip = c("country", "date", "cases")) %>%
highlight(on = "plotly_hover")
Plot here. Screenshot below.
References
No hay comentarios:
Publicar un comentario